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Abstract
We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY)
particles via thermodynamic perturbation theory (TPT). We show that all the topologies of
phase diagram reported for the symmetric binary mixtures are correctly reproduced within the
TPT approach. In a second step we use the capability of TPT to be straightforwardly extended
to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different
topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when
an asymmetry in the diameters of the two components is introduced. Interestingly, when the
energy of interaction between unlike particles is weaker than the interaction between like
particles, the propensity for the solution to demix is found to increase strongly with size
asymmetry.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

While the study of one component fluid phase diagrams is
standard practice [1], the investigations of, even simple, binary
mixtures phase diagrams are much more challenging due to the
increase in the number of parameters [2–4]. As predicted by
Gibbs rule, in addition to the liquid–vapour phase separation
observed in one component systems, binary mixtures can
also undergo a demixing transition. The phase diagram is
thus determined by the competition between liquid–vapour
and mixing–demixing phase separation. The presence of
an additional degree of freedom, the concentration of the
two species, considerably widens the spectrum of critical
behaviours: tricritical points, critical end points, four phase
points and critical lines replace the simple critical point and
triple point found in one component fluids [3].

In order to reduce drastically the parameter space, in an
attempt to study quantitatively the phase behaviour of binary
mixtures, some works focused on the so-called symmetric
binary mixtures. In this class of systems, the two components
have the same diameters (d11 = d22 = d12 = d) and the

attraction strengths between like particles are equal, while
the ratio of the interaction strengths between unlike species
δ is introduced as tunable parameter. The phase behaviour
of symmetrical binary mixtures has been studied by means
of liquid state theories and computer simulations, but these
investigations have been mainly limited to the equimolar plane
of the phase diagram (x = 1/2) [4–6], while relatively
few studies of the more general case of non-equimolar
concentrations can be found in the literature. From these
studies, different topologies of phase behaviour emerge in
agreement with the mean field predictions. In particular, the
value of δ is the key parameter that lies at the origin of these
different topologies.

Only recently, insights into the complexity of the entire
phase diagram of symmetric binary mixtures have been
obtained using the hierarchical reference theory (HRT) [3].
This accurate theory introduces long-range density and
concentration fluctuations via a renormalization procedure,
where the long wavelength Fourier components of the
microscopic interaction are gradually introduced in the
Hamiltonian of the mixture [7, 8].
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A systematic investigation of the full phase diagram
for one of the archetypes of the symmetric binary mix-
ture phase diagram, based on the mean spherical approx-
imation (MSA) and complemented with grand canonical
Monte Carlo (GCMC) simulations, has also been recently pre-
sented [9]. In this case, even if MSA is less accurate than
more advanced liquid state theories, particularly in the critical
regions, semiquantitative agreement with the MC simulations
was obtained. This work confirmed the results obtained previ-
ously via HRT and complemented it, since the full coexistence
phase diagram was calculated.

One natural question to ask is what is the effect of
an asymmetry in the interactions. In particular, it would
be important to understand what features of the symmetric
mixtures survives. Both HRT and MSA are possible tools to
undertake such an investigation. HRT, however, is already very
laborious and computationally expensive for the symmetric
mixture. Moreover its generalization to nonsymmetric binary
mixtures is not straightforward [10]. On the other hand, the
convergency of the semi-analytical MSA is also not guaranteed
when moving to asymmetric mixtures, especially for strong
asymmetry.

To gain insights into the properties of liquid systems,
thermodynamic perturbation theories (TPT) have been of
great importance when there are reference systems that are
fully tractable. Besides the great success in atomic and
molecular liquids [1], TPT have had a great impact on colloidal
systems. Probably, the most important result was obtained for
monodisperse short-range fluids. In fact, Gast et al were able
to describe the phase diagram of colloidal particles interacting
by depletion interactions [11], proposing, for the first time,
the existence of a metastable liquid–liquid coexistence line
in short-range attractive colloidal systems. More recently,
thermodynamic perturbation theory was used to understand the
interplay between phase coexistence and the glass line [12].
If the perturbative approach is known to give quantitatively
imprecise results near phase boundaries and near criticality, it
can be quantitatively correct elsewhere and it is an invaluable
tool to predict the main features of the thermodynamic phase
diagrams in liquids. Moreover, the method can be applied to
very general mixtures, for which the convergence of integral
equations is still out of reach.

In this paper we will apply TPT to describe the phase
behaviour of the symmetric mixtures. We shall show that
the main topologies obtained from HRT, MSA or GCMC
approaches [3, 5, 9] are recovered within perturbation theory.
In a second step we will consider symmetric mixtures of
Yukawa particles which belong to the different classes of phase
diagram and introduce a slight asymmetry in the diameters of
the two components. This size asymmetry, which suppresses
some artificial topologies of the symmetric cases, leads to
an interesting variety of phase diagrams that are, at the
moment, very difficult to assess by theoretical or computational
techniques. Indeed, TPT has been successfully applied to
study binary mixtures of eye lens proteins [13]. In this highly
asymmetric case, a qualitative, even quantitative in some cases,
agreement with the simulations was obtained [14].

2. Thermodynamic perturbation theory

2.1. Helmholtz free energy

We study the phase diagram of binary fluid mixtures through a
thermodynamic perturbative approach [1, 15]. The equation
of state of the interacting system is derived by treating the
attractive potential ui j(r) as a perturbation of the hard-sphere
potential u0

i j(r). This leads to an expression for the Helmholtz
free energy F in terms of the average of βu(r) and its powers
taken over the unperturbed binary hard-sphere fluid ensemble.
This reads for the first-order case:

F − F0

NkBT
= 1

2
ρβ

2∑

i, j=1

xi x j

∫
ui j(r)g0

i j(r) dr + O(β2) (1)

where F0 and g0
i j(R) are the free energy and the partial

radial distribution function of the unperturbed system. A
binary mixture of spherical particles of radius d1 and d2 is
unequivocally defined by giving the number of particles of
each kind, Ni (i = 1, 2), and the volume V occupied by the
system. The overall number density is then defined by ρ =
(N1 + N2)/V and the mole fraction, which gives the relative
concentration of the two species, by x = N1/N . We used
the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL)
equation of state for the free energy of the binary hard-sphere
reference mixture F0 [16], and the partial radial distribution
g0

i j(r) functions were computed solving the Ornstein–Zernike
equations with the partial direct correlation functions ci j(r) of
the binary mixture obtained by Lebowitz within the Percus–
Yevick (PY) approximation [17]. To correct the shortcomings
of the PY hard-sphere distribution functions we used the
Grundke–Henderson procedure, a generalization to mixtures of
the Verlet–Weis modifications [18, 19]. The thermodynamics
obtained via the Grundke–Henderson procedure is consistent
with the BMCSL equation of state. Details of the calculation
of the hard-sphere reference mixture properties can be found
in [14].

2.2. Stability criteria: the spinodal

It is convenient to scale F and the other extensive variables,
V and Ni (i = 1, 2), by the total number of particles N =
N1 + N2. The reduced free energy f = F/N is then a function
of the volume per particle v = ρ−1 and the mole fraction x , as
in equation (1). The condition of thermodynamic stability of
binary mixtures can be expressed in terms of the derivatives of
the Helmholtz free energy per particle f [20]

fxx > 0 and fvv − f 2
vx

fxx
> 0 (2)

fvv > 0 and fxx − f 2
vx

fvv

> 0 (3)

where fμν ≡ 1
2 (

∂2 f
∂μ∂ν

)T and fμμ ≡ 1
2 (

∂2 f
∂μ2 )T,ν (μ, ν = v, x). In

one component systems, the instability can be only driven by
mechanical instability, i.e. by density fluctuations. For binary
mixtures, besides mechanical instability, strong concentration
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fluctuations can lead to material instability. The latter lead
to demixing, i.e. a separation of the system into phases
of different concentrations. Except in special cases, both
mechanical and material instabilities will in general appear
simultaneously [2].

2.3. Main fluctuations driving the instability

In order to determine to what degree the instability is driven
by largest mechanical or material fluctuations (i.e. density
or concentration fluctuations) it is useful to diagonalize the
stability matrix [ f ] (i.e. the matrix of the partial derivatives
of f ) through an orthogonal change of basis [20, 21]. The
eigenvalues are given by:

λ± = 1
2 tr[ f ] ± 1

2

√
tr[ f ]2 − 4 det[ f ] (4)

and the normalized eigenvectors can be written:

z± =
(

x±
y±

)
(5)

with:

x± = 1

/√

1 +
[

fvv − λ±
fvx

]2

y± = −x±
fvv − λ±

fvx
.

(6)

The nature of the instability can be characterized defining the
angle α

α = arctan

(
x−
y−

)
(7)

with the argument that simplifies to

x−
y−

= − fvx

fvv − λ−
. (8)

When an instability is reached, the stability matrix becomes
singular and the determinant det[ f ] ≡ λ−λ+ vanishes, a
condition that is independent of the basis chosen to diagonalize
the quadratic form. The border of a stability region is thus
indicated by the smaller eigenvalue λ− going to zero.

The above relation holds for [ f ] nondiagonal ( fvx �=
0). The angle α is the angle between the eigenvector
corresponding to the smallest eigenvalue z− and the axis
representing the concentration fluctuations. If α is equal to
zero, the eigenvector is aligned to it and pure concentration
fluctuations dominate. On the other hand, if α is equal to
±π/2, only density fluctuations are present in the system.
These limiting situations are only encountered in special cases.
In general, the instability will be predominantly of demixing
type, when α is close to 0, and of condensation type, when α is
close to ±π/2.

This formalism was first introduced by Chen and
Forstmann [21] to characterize the instability of binary
mixtures as an alternative to the Bhatia–Thornton partial
structure factors [22]. The latter, which can also be measured
in principle in simulations, and whose divergence is a
good indicator of instabilities of pure condensation or pure
demixing, are less suited when fluctuations in both density and
concentration are taking place at the same time.

2.4. Phase coexistence: the binodal

Within the TPT approach we do not have access directly to
the coexisting (binodal) surface. In order to build the whole
coexisting surface we have to pass through the determination
of (all) the coexisting phases and related tie lines in the system.
Two phases (I and II) coexist if the pressure and the chemical
potential of each species (1 and 2) are equal in both phases, i.e:

P(I) = P(II), T I = T II

μ
(I)
1 = μ

(II)
1 μ

(I)
2 = μ

(II)
2 .

(9)

This is a non-linear system of equations that must be solved
numerically. We use a Newton–Raphson algorithm to solve
them and to compute the binodal.

2.5. Critical lines and critical end points (CEP)

At a critical point, the tie lines that join coexisting phases
become tangent to the curve bounding the instable region [2].
This condition can be expressed as:

fxxx −3 fxxv

(
fxv

fvv

)
+3 fxvv

(
fxv

fvv

)2

− fvvv

(
fxv

fvv

)3

= 0. (10)

The critical lines are then computed by determining, on the
spinodal surface, the loci where this condition is satisfied.

In binary mixtures critical end points (CEP) can be also
found. These are the points where a critical phase coexists
with a noncritical one. However, within TPT, the determination
of the CEP requires the calculations of the whole coexisting
states to assess where a critical line meet the coexisting surface
related to another critical line. This was done for type II-β
(section 4.3.1). Comparisons with the MSA results allow one
to give a good estimate for type II-α as well (section 4.3.2).
For the other mixtures, in particular for the asymmetric ones,
we just indicate the approximate locations where we expect
the critical end points to be present. The latter are thus denoted
CEP? and the metastable part of the critical line is indicated by
small (white) dots.

3. Model

The particles interact via the hard core Yukawa (HCY) pair
potential ui j(r). The interaction between like particles is the
same, (u11 = u22), while unlike particles have a weaker
energy of interaction, u12(r) = δuii (r), with δ < 1.
The HCY potential has been adopted in several studies of
the symmetric mixtures based on the self-consistent Ornstein
Zernicke approximation (SCOZA) [4], MSA [9] or HRT [3].
The particles are additive hard spheres and their attractive tail
is given by an attractive Yukawa potential:

ui j(r) =
{∞ if r � di j

−εi j di j e
−z(r/di j −1)/r if r > di j .

(11)

The parameters εi j and z, define the energy scale and the range
of the interactions respectively. The former is taken unitary.
The inverse range of the interaction has been fixed to z = 1.8
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Figure 1. TPT phase diagram of the symmetric binary mixture at x = 0.5 representing the possible topologies of phase diagrams (I, II-α, II-β
and III for δ = 0.8, 0.65, 0.7 and 0.5 respectively). Beyond the λ-line, the fluid demixes into two phases of same density but with
concentrations x and 1 − x . Depending on δ, critical points (CP), critical end points (CEP), tricritical points (TCP) and triple points (TP) can
occur. The tendency for the solution to demix is enhanced when lowering δ.

for both like and unlike species. This value of the screening
length has been used in the aforementioned studies on HCY
symmetric binary mixtures [3, 4, 9]. Indeed, it has been shown
that the HCY potential provides a reasonable description of
simple fluid for z = 1.8, as well as colloidal suspensions,
where typically z � 1. The symmetric binary mixture is
composed of particles that have the same size d11 = d22 =
d12 = d = 1. In a second step, mixtures of particles with size
ratio � = d2/d1 different from one will be considered. In that
case d11 = d = 1 is kept fixed while the size of the second
component is increased (d22 > d and d12 = 1/2(d + d22)).

4. Phase behaviour of the symmetric binary mixtures

4.1. Phase behaviour at x = 1/2

The phase diagram of symmetric binary mixtures was first
studied focusing on the particular plane of equal species
concentration (x = 1/2) [4, 5]. In this simplified case, when
the parameter δ varies from 0 to 1, three different topologies
of phase diagrams, arising from the competition between gas
and mixed-fluid (G–MF) transition and demixing transition,
have been observed and classified. The mean field phase
diagram at equal species concentration presents both a first-
order coexistence boundary between a low density fluid and a
high density one, and the so-called λ line of mixing–demixing
critical points. When crossing this line, the fluid demixes into
two phases of the same density but with concentrations x and

1 − x . Depending on the loci where the λ line crosses the G–
MF transition, three types of phase diagrams have been defined
(types I, II and III) [3–5]. This classification is based on the
projection of the phase diagram on the x = 1/2 plane, and was
suggested first by Tavares et al [23]. The calculation of the
phase diagram on the whole x–ρ plane reveals the presence of
two subtypes for the type II of phase diagrams [9], as will be
shown.

We will present now the phase diagrams of symmetric
binary mixtures we obtained from perturbation theory. In
particular, we start with the description of the three different
topologies of symmetric phase diagrams based on their
projection on the x = 1/2 plane. These diagrams are presented
in figure 1.

4.1.1. Type I at x = 1/2. The first topology corresponds
to high values of δ (δ1 < δ < 1 with δ1 = 0.708 within
the mean field) and is depicted in the upper left panel of
figure 1 for δ = 0.8. At low temperature (T1 on the figure)
a gas at x = 0.5 coexists with two demixed fluids of the
same density but opposite relative composition (x and 1 − x).
Indeed, when crossing the λ line, the system separates into a
component 1-rich phase and a component 2-rich phase. The
coexistence between a gas and a mixed fluid (which we will
call from now on a liquid–vapour LV coexistence) is also
present, but metastable with respect to the previous one. At
higher temperature (T2), the gas and the homogeneous fluid
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(x = 0.5) coexist and their coexistence curve ends into a
liquid–vapour critical point (CP). The λ line intersects the L–V
coexistence curve well below the L–V critical point at TCEP, in
what appears to be a critical end point (CEP), i.e. a point where
a critical liquid coexists with a noncritical gas. The presence
of a CEP has been obtained by different authors within MF
and SCOZA calculations [3, 4]. However, the determination of
the critical lines on the whole ρ–x space, presented in the next
sections, seems to indicate that a critical end point might not
necessarily be present, in agreement with HRT and modified
hypernetted chain (MHNC) calculations [3, 6].

4.1.2. Type III at x = 1/2. By decreasing δ, the propensity
of the mixture to demix is enhanced, and the L–V coexistence
curve moves to lower temperature. At small δ (0 < δ <

δ2, with δ2 = 0.605 within MF) the point at which the
coexistence curve intersects the λ line coincides with its
critical point. Critical point means here: the locus where the
homogeneous low density gas become critical. This point
is called the tricritical point (TCP): on approaching it from
low temperature, the simultaneous coalescence of three phases
is observed, namely a low density and homogeneous gas,
and two demixed high density fluids. There is now no first-
order L–V transition between the gas and the mixed fluid (the
corresponding coexistence curve being metastable) and also no
L–V critical point. This topology of phase diagram is shown in
the lower right panel of figure 1 for δ = 0.5.

4.1.3. Type II-α and II-β at x = 1/2. An intermediate
topology (type II) is found in a narrow interval (δ2 < δ < δ1).
An example is presented in the upper right panel of figure 1
(subtype II-β with δ = 0.7). At low temperature, T1, an
homogeneous gas coexists with two demixed fluids, as in
type I. The λ line intersects the L–V coexistence just below
the critical point of the L–V transition, which is also present as
in type I. At TTP, we observe the occurrence of a triple point
where a gas, a mixed liquid at intermediate density and a 1-rich
and a 2-rich liquid at high density coexist. By increasing the
temperature up to TTCP, the homogeneous liquid and the two
demixed fluids become critical at the same tricritical point (as
in type III). A second subtype (II-α) is also found for slightly
lower δ, and the phase diagram is drawn on the lower left panel
of figure 1 (δ = 0.65). Except for the relative location of the
TCP with respect to the CP, the distinction between the II-α
and II-β subtypes is not possible from the x = 1/2 cuts1, but
the difference will become clear when considering the phase
diagram on the entire x–ρ space and the connection between
the different critical lines, as we will see in the next sections.

4.2. Accuracy of TPT for the symmetric binary mixture

Before moving to the determination of the phase diagram on
the whole x–ρ plane we will test the accuracy of TPT in
predicting the critical loci of the symmetric binary mixture.

1 In fact, for a δ value at the boundary between cases II-α and II-β, the
temperature of the tricritical point might be even higher than the minimum
along the critical line CL4 of case II-β (see figure 4), thus making impossible
the distinction between the two subtypes from the x = 1/2 cuts alone.

Figure 2. Projection of the critical lines in the x–ρ plane (upper
panel) and x–T plane (lower panel) for δ = 0.5 as obtained from
perturbation theory, HRT and MF calculations (from [3]). The TPT
critical lines lie in between MF and the more accurate HRT results in
both projections. The stability indicator, α, is also drawn on the TPT
critical line (0 < |α| < π/2). For α = 0 (horizontal arrow),
fluctuations in concentration x drive the phase separation and
demixing is found, as observed at x = 1/2. When |α| = π/2
(vertical arrow), the system becomes critical because of density
fluctuations and the L–V transition occurs, as found in the one
component limits (x = 0 and 1).

Figure 2 shows the projections of the HRT, MF and TPT critical
lines on both the ρ–x and the x–T planes for the type III phase
diagram (δ = 0.5). This value of δ is small enough to give
the same topologies of the critical lines in HRT, mean field
theory and also TPT. The TPT critical lines are found to fall
in between the results of HRT and MF. For the pure species, it
is known, from the comparison with accurate simulation data
for the critical point of the Yukawa fluid with the same z = 1.8
inverse range considered here [24], that TPT underestimates by
about 10% the critical density and overestimates by about 5%
the critical temperature. It has been shown that HRT provides a
very good determination of the critical point for Lennard-Jones
like fluids [25] and we found for the critical loci of the binary
system the same differences between TPT and the accurate
HRT, as for the pure fluid case.

The relatively long range of the attraction (z = 1.8) is
responsible, at least in part, for this accuracy: it is well known
that the error within TPT on the location of the critical density
for one component systems becomes smaller and smaller when
the range of the potential increases [26]. But our results
provide an evident improvement with respect to other mean
field theories and TPT is certainly a valuable method to study
the phase behaviour of binary mixtures.

The stability indicator, α, defined above, which indicates
the kind of fluctuations that are driving the phase separation
process, is also drawn on the critical line in figure 2. For the
pure one component solutions, fluctuations in density (|α| =
π/2, red) lead to L–V phase separation, while at x = 1/2,
along the λ-line, pure fluctuations in concentration (α = 0,
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blue) are responsible for the demixing of the solution. The
value of α, which gives the direction of the order parameter
of the transition, will also be drawn in the next figures on
the different critical lines, using the same definition for the
colours associated with the possible values of α as presented
in figure 2.

4.3. Phase behaviour in the x–ρ plane

We will describe now the phase behaviour of symmetric binary
mixtures on the whole x–ρ plane. The critical lines and the
phase behaviour of the different type of phase diagrams that
were defined in the preceding section will be determined. We
start the investigation by a careful study of subtype II, thus
focusing on the set of interparticle strengths for which the
phase diagram at equal concentration exhibits both a liquid–
vapour critical point and a tricritical point. MSA results for this
topology of phase diagrams showed two possible subtypes [9].
Following the definitions introduced before, we present now a
detailed study of subtype II-β . The other phase diagrams will
be then also presented, but more briefly.

4.3.1. Phase diagram of type II-β . The phase diagram of
type II-β is depicted in figure 3. Four critical lines CLi

can be distinguished. Each critical line spans along a well
defined coexistence surface Si . CL1 is the λ line, the critical
line of the symmetrical demixing surface S1 present at high
density. At the tricritical point, CL1 bifurcates and gives rise
to two critical lines, CL2 and CL3, that cross the surfaces S2

and S3 (composed of the green small dots). These critical
lines terminate in critical end points (CEP) when reaching the
fourth coexistence surface S4 which spans along the whole
concentration range. CL4, the critical line related to S4,
connects the pure component liquid–vapour critical points and
is totally disconnected from the λ line. Some other aspects of
the phase behaviour of the subtype II-β (cuts of the spinodal
surface at different temperature and the stability indicator on
the critical line) are also depicted in the upper right panel of
figure 4.

The critical lines presented on figure 3 were obtained
solving equation (10) on the instability surface. Using this
efficient method to compute the critical lines, we found
peculiar critical loops at intermediate concentration and
density, made of CL2, CL3 and of two low density branches
(L2 and L3). In a second step, the coexistence surfaces were
determined and, from the extrapolation of the coexistence
points, we verified the location of the critical lines previously
calculated. In this way, we found that CL2 and CL3 end in CEP,
while L2 and L3 are located below the coexistence surface S4

and, thus, are metastable. We note a very good correspondence
between these lines and the location in the x–ρ plane of two
triple lines in MSA calculations [9]. These triple lines were
defined by the intersection of coexisting surfaces (in this case
where S4 intersects S2 and S3). The triple lines are not critical
lines, but they are located on the binodal surface. The close
similarity we found between L2, L3 and the triple lines of [9]
could be due to S4 and S3 (or S4 and S2) meeting very close to
(but not exactly at) the stability boundary of either of them.

Figure 3. TPT phase diagram of the δ = 0.7 symmetric binary
mixture (upper panel) and its projection onto the x–ρ plane (lower
panel). The underlying spinodal surface is coloured in the 3D
diagram. The critical lines (CLi ) are drawn in red. In order to obtain
the four coexistence surfaces Si (coloured in the lower panel), we
calculated coexisting states (dark dots). Up to three coexisting states
were found. Some tie lines joining the coexisting phases are drawn
(dashed thin lines). The green dots (and green line) are coexisting
phases that join at CL2 and CL3, and the critical end points (CEP) of
CL2 and CL3 are also drawn (blue squares). The dashed red line is
the mixing–demixing λ line (CL1), with some of the corresponding
coexisting states depicted by triangles. The dashed lines (L2 and L3)
are solutions of equation (10) but located below the coexistence
surface. The large red dots represent the triple line.

4.3.2. Phase behaviour of the remaining type (II-α, I and III).
A second subtype of phase diagram II has been also defined
and is depicted in the lower left panel of figure 4 for δ = 0.65:
for this subtype II-α, the λ line bifurcates at the tricritical point
into two critical lines which pass through minima and connect
to the liquid–vapour critical points of the pure phases. This,
indeed, is in contrast with subtype β , where CL4, the critical
line arising from the pure component critical points, is totally
disconnected from the λ line, and this leads to the distinction
between the two subtypes. Within TPT the transition between
the two topologies is found around δ = 0.6694.

A peculiar solution for the loci of critical points is obtained
for subtype α as well. In that case, a loop of points, the
solution of equation (10), is found around x = 0.5, but,
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Figure 4. The four different types of phase diagrams for the symmetric binary mixture are depicted (δ = 0.8, 0.7, 0.65, 0.5). The projection
of the critical lines onto the x–ρ plane and cuts of the instability surface for different temperatures (0.8–1.24 by steps of 0.02) are shown. The
transition between the two subtypes of topology II (δ = 0.70 and 0.65) is found around δ = 0.6694. The critical end points are represented by
small squares. The value of the stability indicator α on the critical lines is also shown (according to the scale introduced on figure 2). The
dotted lines denote metastable parts of the critical lines.

from the analysis of the coexistence points, only the lower
part corresponds to a critical line, in agreement with the
MSA study [9]. Thus, the determination of the spinodal
and the critical loci from equation (10) is certainly a very
efficient tool to map the topology of the phase diagram
but it should be complemented by the computationally more
involved determination of the coexisting points. The necessity
of also computing the set of coexisting points and tie lines
will become crucial when dealing with more complex binary
mixtures [14].

Phase behaviours corresponding to the remaining topolo-
gies (type I and III) are also depicted in figure 4. Interestingly,
from the calculations of the critical lines for the δ = 0.8 case,
it seems that the λ-line does not end in a CEP at x = 1/2,
contrary to what the analysis at x = 1/2 tends to show. The
mixture seems still to be in the intermediate regime (II-β), with
the occurrence of a tricritical point and the presence of very
tiny coexistence surfaces (S2 and S3) and their connected crit-
ical lines. We do not observe the clear occurrence of a CEP
at x = 1/2 up to δ = 0.9, the central loops made of CL2,
L2 and CL3, L3 becoming just narrower. For higher δ, the
intermediate coexistence surfaces become so small that their
presence is very difficult to assess. However, in order to as-
sess if, indeed, a tricritical point persists up to high values of
δ, the stability of the critical lines CL2 and CL3 with respect to

the first-order phase transition should be carefully investigated
and the whole coexistence boundaries computed. An absence
of CEP would be in qualitative agreement with studies based
on HRT and MHNC which did not find any critical end point
at equimolar species up to δ = 0.8 [3, 6]. At the same time,
simulations performed on square well potentials found the CEP
characteristic of topology I already at around δ = 0.7 [5] and
the same behaviour was observed in Monte Carlo simulation of
Lennard-Jones symmetric mixtures [27].

The important conclusion we can draw at this point, is
that the phase diagrams of the binary symmetric mixtures are
well reproduced by perturbation theory and we can rely on it to
investigate the phase diagrams of more realistic mixtures. As a
first step in this direction, we will study now what is the effect,
on the phase diagram, of introducing an asymmetry � = d2/d1

into the binary mixtures.

5. Phase behaviour of asymmetric binary mixtures
(d1 �= d2)

In this section, we present an overview of the phase behaviour
of the different phase diagram topologies presented above
when introducing a slight asymmetry in the diameter of the
two components. The spinodal instability and the critical lines
are determined for the different mixtures and give a first insight
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Figure 5. Phase behaviour of type II-α phase diagram (δ = 0.65) of the symmetric mixture for different � = d2/d1 ratios. The projection of
the critical lines onto the x–ρ plane and cuts of the instability surface for different temperatures (0.8–1.24 by steps of 0.02) are shown for
� = 1, 1.03, 1.1, 1.15, as indicated on the panels. The λ-line of the demixing transition is connected to the LV critical point of the pure small
component (x = 1) for � > 1. The squares are estimates of the critical end points CEP locations and the dotted lines denote metastable parts
of the critical lines.

into their phase diagram. This study might be complemented
by a more careful determination of the coexistence surfaces
which will also assess the exact location of the critical lines and
critical end points. However, for the scope of the present study,
the determination of the spinodal and the calculations of the
critical lines through equation (10) will already give important
insights into the effect of size asymmetry on the phase diagram.
The complete determination through TPT of the phase diagram
of a more specific binary mixture, namely a model for solution
of α and γ eye lens proteins, can be found in [14].

We consider the same HCY interaction between the two
components (equation (11)) as for the symmetric case. The
inverse screening length is kept fixed (z = 1.8) and we only
increase the diameter of the second component d2. In this way,
the effective range of interaction between the components of
kind 2 is reduced, and the critical point of the pure mixture
of component 2 should move correspondingly to lower T and
higher φ when increasing �. However, for the HCY with
z = 1.8 the change in the range of the second component is
almost negligible. For the highest ratio � = 1.25 considered
in this study, the location of the critical point changes by less
than 0.2% with respect to � = 1. Thus, changes to the phase
behaviour of the binary mixtures observed when increasing �

are caused essentially by the size asymmetry and not by the
change in the interactions between the components.

5.1. Phase behaviour of type II-α

For subtype II-α, two interesting features appear when �

increases and the symmetry with respect to x = 1/2 is
broken (figure 5). First, the λ line of the demixing transition
is connected to the liquid vapour critical point of the pure
solution of the smallest component only, as soon as d1 �=
d2, forming a single critical line denoted by CL2 on the
panels with � �= 1. Along this critical line, the fluctuations
responsible for the phase separations change from density–
density fluctuations near x = 0, to essentially concentration–
concentration fluctuations near x = 0.5.

We expect the critical line CL3 of the second and bigger
component to end in a critical end point at intermediate density
and composition, near the locus where the λ line bifurcates into
CL2 and CL3 at � = 1. The exact location of this end point
has not been determined, as explained above, but the expected
location is indicated (CEP? symbol).

Second, as d2 increases further, the critical line CL3

arising from the critical point of the pure large component
extends towards lower densities and, at around � = 1.15,
detaches from its intermediate density branch (CL3b) to join
the critical line that comes from the liquid vapour critical point
at x = 1/2, and that was already present in the case of the
symmetric mixture. This gives rise to a new critical line CL3a ,
as shown on the lower right panel. The small coexistence
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Figure 6. Phase behaviour of type II-β phase diagram (δ = 0.7) of the symmetric mixture for different � = d2/d1 ratios. The projection of
the critical lines onto the x–ρ plane and cuts of the instability surface for different temperatures (0.8–1.24 by steps of 0.02) are shown for
� = 1, 1.03, 1.2, 1.25, as indicated on the panels. The squares show the critical end points (CEP) and the dotted lines denote metastable parts
of the critical lines. For � = 1.25, the λ line connects the LV critical point of the pure small component (x = 1).

surface around CL3b is still present at � = 1.15 but will
disappear at larger asymmetry.

5.2. Phase behaviour of type II-β

The phase behaviours for subtype II-β are depicted in figure 6.
For � �= 1, the λ line detaches from the critical line CL3 that
crosses the coexistence surface S3 for the symmetric mixture
(as defined on figure 3) and connects to CL2 only. This critical
line, called now CL2, moves when increasing � towards lower
densities and larger x (i.e. towards the pure mixture of small
components), coming closer and closer to CL4, which exhibits
a strong bending (see the kink around (x, ρ) = (0.8, 0.3) in
the � = 1.20 panel). Moreover, we expect the detached CL3

now to have two critical end points (CEP?).
At � = 1.25, the critical point of the pure small

component finally connects to CL2, CL2 expanding now from
the former λ line present at � = 1 to the pure mixture of
component 1 (x = 1), as is found in the II-α subtype for
� > 1. The critical line CL3 is still present but will disappear
for larger �.

5.3. Phase behaviour of type I and III

The phase behaviours for δ = 0.8 are presented in the upper
panels of figure 7. We observe qualitatively the same phase
behaviour as for type II-β , with the λ line that we speculate to

be connected to the small component critical point at higher �.
Thus, also for the asymmetric case, no type I topology seems
to be found within TPT.

The phase behaviour of type III is less rich and interesting
than the previous ones (see lower panels of figure 7). The
critical point of the pure solution of large particles is totally
disconnected from the λ line as soon as � > 1, and a critical
end point is expected. The λ line connects to the LV critical
points of the pure solution of small components (CL2 on the
lower left panel).

In conclusion, we observed that for sufficiently large
asymmetry (the value of � required depends on δ) the λ-
line is always connected to the critical point of the smallest
component only. Because of the attractive interaction between
the particles, the system is expected to undergo a liquid–vapour
transition for suitable x , ρ and T . This happens already in the
symmetric case at low or high concentration x , where one of
the components does not influence the L–V transition of the
other species. Moreover, since δ < 1 (i.e. εi j < εii ), the
internal energy tends to promote demixing between the two
components. At sufficiently high density, the loss of entropy
induced by demixing might be overcome by the increase in the
absolute value of the internal energy. In this case, the system
undergoes a mixing–demixing transition, as we observed in all
symmetric mixtures investigated.

In the case of � > 1, the propensity for the mixture
to demix while increasing the concentration of the largest
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Figure 7. Phase behaviour of type III (εi j = 0.5) is depicted in the lower panels for � = 1, 1.15 (left and right respectively). The εi j = 0.8
case is shown in the upper panels (� = 1, 1.25, left and right respectively). The projection of the critical lines onto the x–ρ plane and cuts of
the instability surface for different temperatures (0.6–1.6 by step of 0.03 for ε12 = 0.8 and 0.88–1.24 by steps of 0.02 for type III) are drawn.

component becomes stronger and stronger with increasing
asymmetry, for all values of δ. Indeed, from the same argument
we just mentioned, it is clear that when d2 > d1 and ε12 < εii ,
the loss in internal energy when adding some components-2 to
a solution of components-1 is more important than for the equal
size case, since more energetically favourable 1–1 contacts
are lost. The loss of entropy resulting from the demixing of
the solution is then overcome at much smaller density. Thus,
the tendency of the mixture to demix is enhanced and the
corresponding critical line moves to higher concentrations x
and lower densities.

In contrast, the mixing–demixing transition is less
favoured in a solution made principally of the large
components (at small x) when adding small components,
and the critical point of the larger component is always
disconnected from the λ-line at high �. The situation
might change for large � (� ∼ 5), when depletion
induced interactions between the largest components might
also appear [28, 29].

6. Conclusions

In this paper we used thermodynamic perturbation theory
to study the phase behaviour of symmetric binary mixtures
interacting via a hard core Yukawa potential. We showed
that TPT is not only suited for describing the phase diagram
of one component system, but it also accounts well for the
phase diagram of binary mixtures. The main topologies of

the symmetric binary mixtures phase diagram were correctly
reproduced within TPT, in agreement with advanced liquid
state theories, such as HRT. We also discussed the qualitative
and predictive capacity of TPT and demonstrated that this
method provides a clear improvement with respect to standard
mean field approaches.

As a first step towards nonsymmetric mixtures, we
showed in the last section that perturbation theory can be
straightforwardly extended to mixtures that are not symmetric
in size. Interestingly, when the energy of interaction between
unlike particles is weaker than the interaction between like
particles (δ < 1), the propensity for a solution of two
components to demix becomes stronger when the asymmetry
� = d1/d2 increases. Indeed, for sufficiently large asymmetry
(the value of � required depends on δ) the λ-line always
connects the critical point of the smallest component and never
the critical line of the large component.
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